Growth hormone

Growth hormone (GH or HGH), also known as somatotropin or somatropin, is a peptide hormone that stimulates growth, cell reproduction and regeneration in humans and other animals. It is a type of mitogen which is specific only to certain kinds of cells. Growth hormone is a 191-amino acid, single-chain polypeptide that is synthesized, stored, and secreted by somatotropic cells within the lateral wings of the anterior pituitary gland.

GH is a stress hormone that raises the concentration of glucose and free fatty acids. It also stimulates production of IGF-1.

GH is used as a prescription drug in medicine to treat children's growth disorders and adult growth hormone deficiency. In the United States, it is only available legally from pharmacies, by prescription from a doctor. In recent years in the United States, some doctors have started to prescribe growth hormone in GH-deficient older patients (but not on healthy people) to increase vitality. While legal, the efficacy and safety of this use for HGH has not been tested in a clinical trial. At this time, HGH is still considered a very complex hormone, and many of its functions are still unknown.

In its role as an anabolic agent, HGH has been abused by competitors in sports at least since 1982, and it has been banned by the IOC and NCAA. Traditional urine analysis could not detect doping with HGH, so the ban was unenforceable until the early 2000s when blood tests that could distinguish between natural and artificial HGH were starting to be developed. Blood tests conducted by WADA at the 2004 Olympic Games in Athens, Greece targeted primarily HGH. This use for the drug is not approved by the FDA.

GH has been studied for use in raising livestock more efficiently in industrial agriculture and several efforts have been made to obtain governmental approval to use GH in livestock production. These uses have been controversial. In the United States, the only FDA-approved use of GH for livestock is the use of a cow-specific form of GH called bovine somatotropin for increasing milk production in dairy cows. Retailers are permitted to label containers of milk as produced with or without bovine somatotropin.

Nomenclature



Somatotropin (STH) refers to the growth hormone produced naturally in animals and extracted from carcasses. Hormone extracted from human cadavers is abbreviated hGH. The growth hormone produced by recombinant DNA technology has the approved generic name somatropin and the brand name Humatrope, and is properly abbreviated rhGH in the scientific literature. Since its introduction in 1992 Humatrope has been a banned sports doping agent, and in this context is referred to as HGH.

Biology



Gene

Genes for human growth hormone, known as growth hormone 1 (somatotropin) and growth hormone 2, are localized in the q22-24 region of chromosome 17 and are closely related to human chorionic somatomammotropin (also known as placental lactogen) genes. GH, human chorionic somatomammotropin, and prolactin belong to a group of homologous hormones with growth-promoting and lactogenic activity.

Structure

The major isoform of the human growth hormone is a protein of 191 amino acids and a molecular weight of 22,124 daltons. The structure includes four helices necessary for functional interaction with the GH receptor. It appears that, in structure, GH is evolutionarily homologous to prolactin and chorionic somatomammotropin. Despite marked structural similarities between growth hormone from different species, only human and Old World monkey growth hormones have significant effects on the human growth hormone receptor.

Several molecular isoforms of GH exist in the pituitary gland and are released to blood. In particular, a variant of approximately 20 kDa originated by an alternative splicing is present in a rather constant 1:9 ratio, while recently an additional variant of ~ 23-24 kDa has also been reported in post-exercise states at higher proportions. This variant has not been identified, but it has been suggested to coincide with a 22 kDa glycosylated variant of 23 kDa identified in the pituitary gland. Furthermore, these variants circulate partially bound to a protein (growth hormone-binding protein, GHBP), which is the truncated part of the growth hormone receptor, and an acid-labile subunit (ALS).

Regulation

Secretion of growth hormone (GH) in the pituitary is regulated by the neurosecretory nuclei of the hypothalamus. These cells release the peptides Growth hormone-releasing hormone (GHRH or somatocrinin) and Growth hormone-inhibiting hormone (GHIH or somatostatin) into the hypophyseal portal venous blood surrounding the pituitary. GH release in the pituitary is primarily determined by the balance of these two peptides, which in turn is affected by many physiological stimulators (e.g., exercise, nutrition, sleep) and inhibitors (e.g., free fatty acids) of GH secretion.

Somatotropic cells in the anterior pituitary gland then synthesize and secrete GH in a pulsatile manner, in response to these stimuli by the hypothalamus. The largest and most predictable of these GH peaks occurs about an hour after onset of sleep with plasma levels of 13 to 72 ng/mL. Otherwise there is wide variation between days and individuals. Nearly fifty percent of GH secretion occurs during the third and fourth NREM sleep stages. Surges of secretion during the day occur at 3- to 5-hour intervals. The plasma concentration of GH during these peaks may range from 5 to even 45 ng/mL. Between the peaks, basal GH levels are low, usually less than 5 ng/mL for most of the day and night. Additional analysis of the pulsatile profile of GH described in all cases less than 1 ng/ml for basal levels while maximum peaks were situated around 10-20 ng/mL.

A number of factors are known to affect GH secretion, such as age, sex, diet, exercise, stress, and other hormones. Young adolescents secrete GH at the rate of about 700 μg/day, while healthy adults secrete GH at the rate of about 400 μg/day. Sleep deprivation generally suppresses GH release, particularly after early adulthood.

Stimulators of growth hormone (GH) secretion include:

  • peptide hormones
    • GHRH (somatocrinin) through binding to the growth hormone-releasing hormone receptor (GHRHR)
    • ghrelin through binding to growth hormone secretagogue receptors (GHSR)
  • sex hormones
    • increased androgen secretion during puberty (in males from testis and in females from adrenal cortex)
    • estrogen
  • clonidine and L-DOPA by stimulating GHRH release
  • α4β2 nicotinic agonists, including nicotine, which also act synergistically with clonidine.
  • hypoglycemia, arginine and propranolol by inhibiting somatostatin release
  • deep sleep
  • niacin as nicotinic acid (Vitamin B3)
  • fasting
  • vigorous exercise

Inhibitors of GH secretion include:

  • GHIH (somatostatin) from the periventricular nucleus
  • circulating concentrations of GH and IGF-1 (negative feedback on the pituitary and hypothalamus)
  • hyperglycemia
  • glucocorticoids
  • dihydrotestosterone

In addition to control by endogenous and stimulus processes, a number of foreign compounds (xenobiotics such as drugs and endocrine disruptors) are known to influence GH secretion and function.

Function

Effects of growth hormone on the tissues of the body can generally be described as anabolic (building up). Like most other protein hormones, GH acts by interacting with a specific receptor on the surface of cells.

Increased height during childhood is the most widely known effect of GH. Height appears to be stimulated by at least two mechanisms:

  1. Because polypeptide hormones are not fat-soluble, they cannot penetrate cell membranes. Thus, GH exerts some of its effects by binding to receptors on target cells, where it activates the MAPK/ERK pathway. Through this mechanism GH directly stimulates division and multiplication of chondrocytes of cartilage.
  2. GH also stimulates, through the JAK-STAT signaling pathway, the production of insulin-like growth factor 1 (IGF-1, formerly known as somatomedin C), a hormone homologous to proinsulin. The liver is a major target organ of GH for this process and is the principal site of IGF-1 production. IGF-1 has growth-stimulating effects on a wide variety of tissues. Additional IGF-1 is generated within target tissues, making it what appears to be both an endocrine and an autocrine/paracrine hormone. IGF-1 also has stimulatory effects on osteoblast and chondrocyte activity to promote bone growth.

In addition to increasing height in children and adolescents, growth hormone has many other effects on the body:

  • Increases calcium retention, and strengthens and increases the mineralization of bone
  • Increases muscle mass through sarcomere hypertrophy
  • Promotes lipolysis
  • Increases protein synthesis
  • Stimulates the growth of all internal organs excluding the brain
  • Plays a role in homeostasis
  • Reduces liver uptake of glucose
  • Promotes gluconeogenesis in the liver
  • Contributes to the maintenance and function of pancreatic islets
  • Stimulates the immune system
  • Increases deiodination of T4 to T3

Clinical significance



Excess

The most common disease of GH excess is a pituitary tumor composed of somatotroph cells of the anterior pituitary. These somatotroph adenomas are benign and grow slowly, gradually producing more and more GH. For years, the principal clinical problems are those of GH excess. Eventually, the adenoma may become large enough to cause headaches, impair vision by pressure on the optic nerves, or cause deficiency of other pituitary hormones by displacement.

Prolonged GH excess thickens the bones of the jaw, fingers and toes. Resulting heaviness of the jaw and increased size of digits is referred to as acromegaly. Accompanying problems can include sweating, pressure on nerves (e.g., carpal tunnel syndrome), muscle weakness, excess sex hormone-binding globulin (SHBG), insulin resistance or even a rare form of type 2 diabetes, and reduced sexual function.

GH-secreting tumors are typically recognized in the fifth decade of life. It is extremely rare for such a tumor to occur in childhood, but, when it does, the excessive GH can cause excessive growth, traditionally referred to as pituitary gigantism.

Surgical removal is the usual treatment for GH-producing tumors. In some circumstances, focused radiation or a GH antagonist such as pegvisomant may be employed to shrink the tumor or block function. Other drugs like octreotide (somatostatin agonist) and bromocriptine (dopamine agonist) can be used to block GH secretion because both somatostatin and dopamine negatively inhibit GHRH-mediated GH release from the anterior pituitary.

Deficiency

The effects of growth hormone deficiency vary depending on the age at which they occur. In children, growth failure and short stature are the major manifestations of GH deficiency, with common causes including genetic conditions and congenital malformations. It can also cause delayed sexual maturity. In adults, deficiency is rare, with the most common cause a pituitary adenoma, and others including a continuation of a childhood problem, other structural lesions or trauma, and very rarely idiopathic GHD.

Adults with GHD "tend to have a relative increase in fat mass and a relative decrease in muscle mass and, in many instances, decreased energy and quality of life".

Diagnosis of GH deficiency involves a multiple-step diagnostic process, usually culminating in GH stimulation tests to see if the patient's pituitary gland will release a pulse of GH when provoked by various stimuli.

Medical uses



Replacement therapy

Treatment with exogenous GH is indicated only in limited circumstances, and needs regular monitoring due to the frequency and severity of side-effects. GH is used as replacement therapy in adults with GH deficiency of either childhood-onset or adult-onset (usually as a result of an acquired pituitary tumor). In these patients, benefits have variably included reduced fat mass, increased lean mass, increased bone density, improved lipid profile, reduced cardiovascular risk factors, and improved psychosocial well-being.

Other approved uses

GH can be used to treat conditions that produce short stature but are not related to deficiencies in GH. However, results are not as dramatic when compared to short stature that is solely attributable to deficiency of GH. Examples of other causes of shortness often treated with GH are Turner syndrome, chronic renal failure, Praderâ€"Willi syndrome, intrauterine growth retardation, and severe idiopathic short stature. Higher ("pharmacologic") doses are required to produce significant acceleration of growth in these conditions, producing blood levels well above normal ("physiologic"). Despite the higher doses, side-effects during treatment are rare, and vary little according to the condition being treated.

One version of rHGH has also been FDA approved for maintaining muscle mass in wasting due to AIDS.

Off-label use

Off-label prescribing of HGH is controversial and may be illegal.

Claims for GH as an anti-aging treatment date back to 1990 when the New England Journal of Medicine published a study wherein GH was used to treat 12 men over 60. At the conclusion of the study, all the men showed statistically significant increases in lean body mass and bone mineral density, while the control group did not. The authors of the study noted that these improvements were the opposite of the changes that would normally occur over a 10- to 20-year aging period. Despite the fact the authors at no time claimed that GH had reversed the aging process itself, their results were misinterpreted as indicating that GH is an effective anti-aging agent. This has led to organizations such as the controversial American Academy of Anti-Aging Medicine promoting the use of this hormone as an "anti-aging agent".

A Stanford University School of Medicine meta-analysis of clinical studies on the subject published in early 2007 showed that the application of GH on healthy elderly patients increased muscle by about 2 kg and decreased body fat by the same amount. However, these were the only positive effects from taking GH. No other critical factors were affected, such as bone density, cholesterol levels, lipid measurements, maximal oxygen consumption, or any other factor that would indicate increased fitness. Researchers also did not discover any gain in muscle strength, which led them to believe that GH merely let the body store more water in the muscles rather than increase muscle growth. This would explain the increase in lean body mass.

GH has also been used experimentally to treat multiple sclerosis, to enhance weight loss in obesity, as well as in fibromyalgia, heart failure, Crohn's disease and ulcerative colitis, and burns. GH has also been used experimentally in patients with short bowel syndrome to lessen the requirement for intravenous total parenteral nutrition.

In 1990, the US Congress passed an omnibus crime bill, the Crime Control Act of 1990, that amended the Federal Food, Drug, and Cosmetic Act, that classified anabolic steroids as controlled substances and added a new section that stated that a person who "knowingly distributes, or possesses with intent to distribute, human growth hormone for any use in humans other than the treatment of a disease or other recognized medical condition, where such use has been authorized by the Secretary of Health and Human Services" has committed a felony.

The Drug Enforcement Administration of the US Department of Justice considers off-label prescribing of HGH to be illegal, and to be a key path for illicit distribution of HGH. This section has also been interpreted by some doctors, most notably the authors of a commentary article published in the Journal of the American Medical Association in 2005, as meaning that prescribing HGH off-label may be considered illegal. And some articles in the popular press, such as those criticizing the pharmaceutical industry for marketing drugs for off-label use (which is clearly illegal) have made strong statements about whether doctors can prescribe HGH off-label: "Unlike other prescription drugs, HGH may be prescribed only for specific uses. U.S. sales are limited by law to treat a rare growth defect in children and a handful of uncommon conditions like short bowel syndrome or Prader-Willi syndrome, a congenital disease that causes reduced muscle tone and a lack of hormones in sex glands." At the same time, anti-aging clinics where doctors prescribe, administer, and sell HGH to people are big business. In a 2012 article in Vanity, Fair, when asked how HGH prescriptions far exceed the number of adult patients far exceeds the estimates for HGH-deficiency, Dr. Dragos Roman, who leads a team at the FDA that reviews drugs in endocrinology, said "The F.D.A. doesn’t regulate off-label uses of H.G.H. Sometimes it’s used appropriately. Sometimes it’s not."



13 comments:

  1. Growth hormone is produced naturally by the pituitary gland. Its levels are highest in the early 20s and soon after, they start to decrease gradually. This is why many people use all-natural products like GenF20 Plus to boost their HGH production.

    In adults, HGH plays the important role of protecting tissues and organs from damage and from the effects of aging. HGH can be used to boost energy levels, to increase bone density, to boost lean muscle mass and to keep skin healthy and youthful. desiring hypergh14x review

    ReplyDelete
  2. I so love with this article, the explanation given so comprehensively. obat kanker mulut

    ReplyDelete
  3. on the internet a lot of scattered articles that discuss topics such as the post authors, but maybe in this blog I can get what I want. thanks.
    Cara Menghilangkan Bekas Jahitan Operasi, http://herbalmulti.blogspot.com/2016/02/cara-mengobati-kanker-serviks-stadium-awal.html

    ReplyDelete
  4. Spot on with this write-up, I truly think this website needs much more consideration. I’ll probably be again to read much more, thanks for that info.
    cara mengobati lambung yang luka
    cara mengobati gas lambung berlebihan

    ReplyDelete
  5. There is noticeably a bundle to know about this. I assume you made certain nice points in features also.
    cara menghilangkan rasa perih di ulu hati

    ReplyDelete
  6. you have a great blog here! would you like to make some invite posts on my blog?
    Cara Menyembuhkan Nyeri Dada Tengah Secara Alami

    ReplyDelete
  7. HGH primarily tells our body what it has to do. It makes sure that our cells, bones and muscles carry on with regeneration at a good pace. When we are in our twenties, it still does the same job but a slower pace. desiring hypergh14x review

    ReplyDelete
  8. All I hear is a bunch of whining about something that you could fix if you werent too busy looking for attention.
    cara mengobati eksim basah di ketiak
    obat herbal pengapuran terampuh

    ReplyDelete
  9. It will always be stimulating to read content from other writers and practice a little something from their store.
    cara menyembuhkan penyakit muntaber

    ReplyDelete
  10. Stunned article, many thanks regarding divided. I want to apricot most it conjointly my hyperlink weblog audition. msp hacker yukleLikewise, please, inflict my blog and you'll surprised exploitation regards to its contented material up with big MovieStarPlanet tips. big gobs!

    ReplyDelete
  11. Growth hormone plays an important role in maintaining a lean physique. When the body stops producing HGH, the first signs of aging become obvious. For many men, these first signs include the loss of muscle mass and the accumulation of belly fat.

    An increase in growth hormone can slow down the hands of time. Apart from affecting muscle mass and the body fat percentage, HGH does a number of other important things. It makes the skin healthy, improves bone density and even has a positive impact on sleep quality.
    compelling vigrxplus website

    ReplyDelete
  12. Because size increase pills are natural and free from synthetics/pharmaceuticals, there is no need to take a break from such supplements. When you’re taking drugs, your body will need a bit of time to rest after the completion of a regimen.

    Such a break is needed to help the liver process any leftover of the drug.

    In the case of natural male enhancement supplements, there’s no need to take a break. You can take the supplement for as long as you need. Still, you may want to get the approval of your doctor for the purpose of being safe and confident about your supplement choice. best vigrx plus website

    ReplyDelete